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SIMPLE MICROFLUIDS* 

A. CEMAL ERINGEN 

Purdue University, Lafayette, Indiana 

Abstract-The basic field equations, jump conditions and constitutive equations of, what we call, ‘simple 
microfluent’ media are derived and discussed. These fluids are shown to be a generalization of the Stokesian 
fluids in which local micro-motions are taken into account. Special cases in which gyrations are small and 
micro-deformation rates are linear are discussed. The partial differential equations of the constitutively 
linear theory are obtained. 

1. INTRODUCTION 

IN A companion paper [l] we gave a nonlinear theory for an elastic solid in which the first 
stress moments, micro-stress averages and inertial spin play important roles. Elastic solids 
exhibiting such local effects were named ‘simple microelastic materials’. In the present 
paper we investigate a new class of fluids which exhibit similar micro-effects. 

A simple micro-fluid, roughly speaking, is a fluent medium whose properties and 
behaviour are affected by the local motions of the material particles contained in each of its 
volume element. A precise definition of such a fluid is given in section 4. The simple 
micro-fluids possess local inertia. Consequently new principles must be added to the basic 
principle of continuous media which deals with 

(i) conservation of micro-inertia moments 
(ii) balance of first stress moments 

The theory naturally gives rise to the concept of inertial spin, body moments, micro-stress 
averages and stress moments which have no counterpart in the classical fluid theories. In 
these fluids stresses and stress moments are functions of deformation rate tensor, and various 
micro-deformation rate tensors. Fluids having surface tensions, anistropic fluids, vortex 
fluids and fluids in which other gyrational effects are important, are conjectured to fall 
into the domain of simple micro-fluids. 

The simple micro-fluids are viscous fluids and in the simplest case of constitutively 
linear theory these fluids contain 22 viscosity coefficients. Nonlinear Stokesian fluids turn 
out to be a special class of simple micro-fluids. 

In Section 2 we discuss the motion and micro-motions. The gyration tensor, inertial 
spin and the conservation of micro-inertia and objectivity of micro-deformation rate tensors 
are derived and discussed. Equations of balance, jump conditions and discussion of entropy 
production and other relevant thermodynamic concepts occupy Section 3. In Section 4 we 
give a theory of constitutive equations. The partial differential equations of constitutively 
linear simple micro-fluids are given in Section 5. 

2. MOTION 

The motion and the inverse motion of a material point X’, having curvilinear coordinates 
JU’“, in the undisturbed body V+S, are respectively given by the parameter one-to-one 
mappings 

* Partially sponsored by the Office of Naval Research. 
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x’=x(X’, t), X’= X(x’, t) (2.1) 

where x’, referred to curvilinear coordinates xlk, is the spatial point occupied by the material 
point X’ at time t. 

We decompose the motion and the inverse motion as 

x’ = x(X, 1) +5(X, 8, 1), X’=X(s, r)+E(x, 5, 1) (2.2) 

where E and 5 are, respectively, the relative position vectors of the material point X’ and its 
spatial place x’ at time t, with respect to the positions X and x, respectively, Fig. 1. By 
selecting 

(2.3) 

it can be shown that [I] the mass center of a volume element d V in the undisturbed body is 
carried into the mass center of dv in the deformed body. 

FIG. 1. Undeformed and deformed volume elements. 

The inverse micro-motions x”,(x, t) are defined by 

xK&=G 9 fkxK’=6:. (2.4) 

Each of the sets in (2.4) is a set of nine linear equations for nine unknowns xKk. A unique 
solution exists in the form 

cofactor xi 1 
XkK= J 

=250 
eKLMeklmxL’xMm 

0 

(2.5) 

provided that the jacobian 

whate det s determinant. 

J,=det XKk #O (2.6) 

For (2.2), to be the unique inverse (2.2),, (2.6) as well as 

J=det x’f,#O (2.7) 

must be assumed. Condition (2.7) is required for X(x, t) to the unique inverse of x(X, t). 
It is not difficult to see that, dual to (2.3), we have 

d -K 

SKZXKk{k ) 
5 

xKk=~ck=o. 
(2.8) 



Next we calculate the velocity v’ 
time rates of (2.2) and using (2.8),. 
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and the acceleration a’. These are obtained by taking 

o’k = t;k + “, k(’ (2.9) 

where 

a lk= an +(O,‘+v,’ vl”)r’ 

a.2 
uyx, 1) 52 irk = x 

x 

(2.10) 

Do’ A+ 
ak(x, t)E- -- Dt - & X+W 

(2.11) 

v,L(x, t) s XKkXK, 

3,‘s ;p:, , 

Here D/D1 stands for the material derivative and a semicolon indicates covariant partial 
differentiation with respect to the metric gkr of the coordinates f. Note that 

fk= II;<’ . (2.12) 

The tensor v is basic in all of the following developments. We shall name it ‘gyration tensor’. 
In the sequel we will also need the inertial spin defined by 

2k’ = IKMjikkX‘I = i”‘( +*’ + v,kv,“) (2.13) 

where 

IKM,IMK= 
s 

dY p,ZKELd I/’ (2.14) 

is a constant material tensor and 

ikm z IKMxKk xMm (2.15) 

is a corresponding one for the deformed body. We shall name ikm as ‘micro-inertia moments’. 

Theorem 1. Micro-inertia moments satisfy the following partial differential equations 

dikm 
al + ikmr +I’ - i’*vF - i”v,” = 0 . (2.16) 

Proof: Take material derivative of (2.15) i.e., 

Er (i’“) = IKMjKk xum +IKMxKktMm . 

From (2.11), with the help of (2.4) we solve for 

iKk = vIkxK’ . (2.17) 

Using this in the previous equations and rearranging terms we obtain (2.16). 
The differential equations (2.16) are the complements to the continuity equations of the 

hydrodynamics for micro-fluids. We shall name them as the equations of ‘conservation of 
micro-inertia moments’. The integral form of these equations are of course given by (2.15). 
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Theorem 2. The material derivative of micro-displacement d$erentials dtk is given by 

Et (dtk) = rrl’dc + $;,,<‘dxnl . 

Proof: Take the material derivative of 

dtk = dz,‘zK +XKkdzK 

i.e., 

it (d<‘) = it (dxKk)EK +$ (lKk)dZK 

but 

; (dX;) = it (&dx’) = it (X~~;t)dx’ +XKk;l U:rdX’ 

where we used the well-known result 12, equation 19.11, i.e., 

it (dx’) = u!,dxm . 

The following identity is also needed 

& (x: ;I) = - %Kk:mv “I, . 
:I 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Through this and (2.17) we will have 

Lt (dxKk) =(\.,k%K1),,dx” . (2.23) 

Using this in (2.20) we obtain (2.18). 

Theorem 3. The material derivative of the square of arc length in the deformed body is given by 

; (ds”) = [ok;, +u,;k +(v,,;, + \;l;~)~*]dxkdx’ 
(2.24) 

+2(L;,:k + \‘,k + V,,;,~‘)dx’dS” + (vk, + \‘lr)d5kdr’ . 

Proof: Take the material derivative of 

dS2 =gk,(dXk +d<‘)(dx’+dr’) 

=gk,dskdx’+2gk,dxkd~‘+gk,d~kd~’ . 

Using (2.21) and (2.18) and rearranging the terms we obtain (2.24). 
We define ‘deformation rate tensor’ d. ‘micro-deformation rate tensors’ b and a by 

dkl= !!(uk,, +  u,;k) = L’(k;I) , b,, = \‘k( +  uk;l , aklm = “kl:m . (2.25) 

Equation (2.24) can now be expressed as 

Et (dS’2)=2[dkr+U ,(&-jdx’dx’ +2(b,, +U,,,i’)dXkd<’ +2[b~k,,-dk,]d<kd~L . (2.26) 

It is clear that when d = b = 0 then u,)[ = 0 and therefore D(ds”)/Dt=O. Conversely, for 
arbitrary dxk and drk, vanishing D(ds”)/Dt implies d= b-0. We therefore have proved 
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Theorem 4. A necessary and suficient condition for micro-rigid motion is that b = d = 0 
This theorem replaces the well-known Killing’s theorem of differential geometry. 
It is well-known that the deformation rate tensor d is an objective tensor; that is, if 

V(X’, t) and x’(X’, t) are two objectively equivalent motions, i.e., referred to rectangular 
frame of reference 

i.rL = Q,kil+ b” (2.27) 

where Q”, and b” are function of time t alone subject to 

Q'I Qm'=QlliQ'm=%, f’=t-a (2.28) 

where a is a constant, then d: transforms as 

2, =QhrdrmQ,“’ or i=QdQT . (2.29) 

Physical interpretation of this is that under the rigid time dependent translation and 
rotation of the frame of reference and the constant shift of time d transform like an absolute 
tensor. We now prove 

Theorem 5. The micro-deformation rate tensor b and a are objective tensors. 
Proof: By putting x’+ xK’EK and 2 + i:ZK respectively in place of x’l and A?‘~ in (2.27) we 
have 

~=Qk&+bk, i," =QI:xA (2.30) 

From (2.30), by differentiation we get 

f: =Qlrr~R+QkJKr 

Now multiply both sides of this equation by f”,= Q,“‘xK, and use (2.4), and(2.1 l),. Hence 

~"=Q':~.'QI"+Q",QI (2.31) 

but we have, c.f., [2, equation 27.161, 
Ql’r = - Qn&’ +Qk& . 

Substituting this into (2.31) we obtain 

bk, =@,b’,Q,” or 6=QbQ’ (2.32) 

which proves the part of the theorem concerning b. Objectivity of a is shown by simply 
differentiating (2.31) with respect to x” and using %~‘“/%i?“= Q,“. Hence 

G:,= Qkd,pQln Qm" (2.33) 

which completes the proof of the theorem. 

3. EQUATIONS OF BALANCE AND ENTROPY 

The principle of conservation of mass is expressed by the well-known equation 

(3.1) 

where p is the mass density of the deforming medium. The principle of conservation of 
micro-inertia moments leads to equations (2.16) i.e., 
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aikm 

x + ikm;, or- irmv: - ikrvlm = 0 . (3.2) 

The axioms of local balance of momenta and conservation of energy are expressed by 

PI. 
t”;k +pcf’ - tip=0 (3.3) 

tml _ Sml + jlklm 
;k+p(l’m-dm)=O (3.4) 

pl: = r%,;, +(s” - tk’)v,, +;!‘mvm,;k +& +ph (3.5) 

valid within the material volume -Y‘, and by the jump conditions 

t”n k = 2’ 
(n) (3.6) 

Aklmflk = $, (3.7) 

qkflk=q(.) 0.8) 

valid on the surface Sp of V. 
Here 

r” =stress tensor, p = mass density 
f’ =body force per unit mass 
skl = stk = micro-stress average 
lZklm=the first stress moments 
I’” = the first body moment per unit mass 
0 *Irn = inertial spin 
E =internal energy density per unit mass 

9 ’ = the heat vector 
h =the heat source per unit mass 
11 =the exterior unit normal vector to Y . 

The surface tractions fi,,,, moments A&, heat q(,,) andI’, Ilrn and I1 are prescribed quantities 
or replaced by equivalent information. 

Axiom. A simple micro-fluid is assumed to possess an internal energy function E which depends 
solely on entropy ?,I, specific volume I/p and the micro-inertia moments ?” 

(3.9) 

We assume that E is continuously differentiable with respect to its arguments and define 
the thermodynamic tensions by 

(3.10) 

Here 0 is called the ‘thermodynamic temperature’, x the ‘thermodynamic pressure’ and 
rrk,,, the ‘thermodynamic micro-pressure tensor’. 

Since q = ~(x, t), p = p(x, t) and i =i(x, t) from (3.9) by differentiation and using (3.1) and 
(3.2), it follows that 

d=eb- F “!! +2nk,i’mv,k . (3.11) 
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We decompose the stress tensors t and s into two parts 

t; = -jk5: + T: ) 2, = -p6’, +sk, (3.12) 

with jj representing hydrostatic pressure.* 
Upon replacing C: in (3.5) by (3.11) and using (3.12) we obtain the differential equation 

of entropy production 

pOil=(K-P)ufk+l,kul,+(Skl -P, -794 +ik,mV,,,‘;k+&+ph (3.13) 

where 

T’, E 2pikmnl, (3.14) 

will be named the thermodynamic micro-stress tensor. From the differential equation (3.13) of 
entropy it is clear that the following dissipative forces contribute to the time rate of change 
of entropy 

(a) the difference between the mechanical and thermodynamic pressures 
(b) the stress power 
(c) the difference of micro and thermodynamic stresses from the stress 
(d) the stress moments 
(e) the heat input and the heat sources. 

It is interesting to note that the micro-fluid with no rigid structure possesses a reversible 
thermodynamic stress whose energy must be subtracted from the stress energies in calculating 
the entropy production. This reversible energy is not encountered in the classical Stokesian 
fluids. 

If we write (3.13) in the equivalent form 

ph 
Pri-(cl'/@;,=A+~ (3.15) 

where 

8A =(7t -p)U!, +fk,L”;k +(skl - +, -tk,)Vk’ +~k,mVml;k +4’(lOf.J e),, . (3.16) 

By integration of (3.15) over the volume we obtain 

where 

HS 
I 

prldo 
Y 

is the total entropy. The Clausius-Duhem inequality 

(3.17) 

(3.18) 

(3.19) 

is obtained from (3.17) for 83 0 if 

8620, phL0. (3.20) 

l Since j5 is somewhat arbitrary there is no reason to take different j, for t and a thus introducing two 
different pressures. Single pressure is also indicated through the dependence of E on single density p in (3.9) 
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In accordance with the tradition we only admit those values of 020; then (3.19) implies 
(3.17). Further progress in dealing with (3.20), requires additional assumptions requiring 
independent non negative character of various dissipative energies, e.g., 

qk(log 0) ,k 20 , etc. 

Since our intention, here, is not to examine closely the foundations of the thermodynamics 
or to dwell into the thermal problems, we leave the subject matter of entropy at this point. 

Definition 

4. CONSTITUTIVE EQUATIONS 

A fluent medium is called a simple micro-fluid if it possesses constitutive equations of 
the form 

subject to spatial and material objectivity and 

when d=b=O. 

tk1 = ski = - =gk, , ikl,,, = 0 (4.2) 

According to the principle of objectivity (4.1) must be form-invariant in any two 
objectively equivalent motions %’ and x’ related to each other by (2.27). This imposes 
conditions on the forms of the functionsf,,, g,., and hk[,. In order to apply the principle of 
objectivity one takes both frames 8’ and x’ rectangular and connected by (2.27) or equi- 
valently (2.30) for R and 1. In the frame 2 we must have 

ikl=fkl@,, t $,, 3 F,,r) (4.3) 

and similar expressions for &., and fikL,“. We have 

i”, = QkmtmnQ,” , $ 

Q,‘= Q’rv,l Q,” +o”, Q,’ , 
.F~~:v’,~Q,~+~~,Q~~ 

VI .m = Qh’.pQP Qmp 
(4.4) 

c.f. [2, equation 48.10], (2.31) and (2.33). Thus, (4.1), (4.3) and (4.4) imply that 

= f(& v'nQln + ok, QI' , Ql'r v,I Q,” + Qk, QI' 1 QkrCpQln Q,') (4’5) 
valid for all 0,: v,,: v,‘,~ and all orthogonal tensors Q. Now we can always select Q = I and 0 
equal to an antisymmetric tensor transformation given a priori. Selecting 

Qkr=%, Q”, = w,k = &(llr,” -IF,) 

we see that (4.5) reduces to the first of the following equations 

t=f(d, b-d, a), s=g(d, b-d, a), 3,=h(d, b-d, a). (4.6) 

Equations for s and I,, here, are obtained by the same procedure. Arguments off, g and h 
are now objective tensors and these functions are subject to 
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f(QdQ' , Q(b- d)QT, QaQTQ’)= Qftd , b-d , a)QT 
g(QdQ'. Q@-d)QT, QaQ'Q')=Qg(d, b-d, a)Q' (4.7) 
h(QdQ', Q(b--d)Q', QaQTQT)=QNd, b-d, 4QTQ' 

where ambiguous expressions such as Q a QT QT are understood to represent the transforma- 
tion of the type (2.30). Equations of (4.5) are valid for all orthogonal tensors Q. Selecting 
Q = -1, (4.7) gives 

f(d, b-d, -a)=f(d, b-d, a) 
g(d, b-d, -a)=g(d, b-d, a) 
h(d, b-d, -a)=-h(d, b-d, a). 

Consequently f and g are even in a and II is odd in a. Therefore 

h(d, b-d, 0)=0 

and we proved the theorems 

(4.8) 

(4.9) 

Theorem 6. A second order objective tensor can only be an even tensor function of odd order 
tensors. A third order objective tensor can only be an oddfunction of any objective third order 
tensor* 

Corollary. Stress moments vanish with vanishing micro-deformation rate tensor a. 

Theorem 7. The constitutive equations qfsimple micro-fluids are equivalent tot 

f“,=.f’[(d, b-d. a), s’,=g:(d, b-d, a), P*, = h:,(d, b-d, a) (4.10) 

where f, g, and h are subject to (4.7) to (4.9) and 

f’[(O, 0, O)= -ns:, g$(O, 0, O)= -4:) h’,,(O, 0, O)=O. (4.11) 

Equations (4.7) impose conditions on the forms off, g and h. These conditions are similar 
to conditions of isotropic tensors. Since third order tensors are involved, the determination 
of the complete invariants of tensors d, b, and a poses a tedious and lengthy study which 
presently is not available or we could not locate any work on this subject. However, by the 
fact that the micro-motions represented by the tensors b-d and a are generally small 
we proceed to obtain power series representation of the constitutive equations in b-d and a 
stopping at the first order terms. Thus we write 

t”=[“(d, b-d, bT-d)+O(a*) 

s”=g”(d, b-d, bT-d)+O(a2) 

*k’mehklm(d, b-d, bT-d)+hkrmrs’(d, b-d, a)a,,+O(a’). d 
0 1 

(4.12) 

* A part of this theorem is usually attributed to P. Curie as the Curie Principle. In the references 
made [3], I have been able to find the following vague statement: “Autrement dit, certains Uments de 
symbrie peuvent coexister avec certains phCnam~nes, mais ils ne sont pas nicessaires. Ce qui est nkessaire, 
c’est que certains CICments de symitrie n’existent pas. c’est la dissymPtrie qui cr4e Ie phbnamc’ne”. Several 
pw of long explanations and examples that follow this statement confuses the matter further by mixing 
material symmetry with what we now call spatial objectivity. 

t We note that f, g. and h may be taken functions of d, b, and a rather than d, b-d, a if we wish. The 
form (4.10) is convenient for the purpose of linearization about b-d and a. 
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The inclusion of b’- d, the transpose of b-d, into the arguments of these functions is 
necessitated for the purpose of making these functions isotropic functions since t, b and 1 
are not, in general, symmetric tensors. When a further assumption is made to the fact that 
the tensor functions f, g, h and h are polynomials in matrices d, b-d and bT- d we can express 

00 0 1 
them in finite number of terms. Using the results of [4] one can show that, c.f., [5, equation 
A. 1] f and g are expressible as polynomials each having 85 terms. In order not to crowd the 
present paper with such lengthy expressions, as stated above, we confine our attention to the 
polynomials linear in b-d and b’-d. Hence 

t=a,I+a,d+a,d2+a,(b-d)+a,(bT-d)+a,d(b-d)+a,(b-d)d 
+a,d(b’-d)fas(b“-d)d+a,d’(b-d)+a,,(b-d)d2 
+a,,d2(bT-d)+a,2(bT-d)d2+a,~d(b-d)d2+alqd(bT-d)d2. 

(4.13) 

An identical expression with ax replaced by & (K-O, 1, . . . . 14) is valid for s. The coefficients 
rK and B;, for (h-=0, 1, 2) are polynomials of the following six invariants 

trd, tr d2. tr d3 (4.14) 
tr (b-d), tr (b-d)d, tr (b-d)d2 

being linear in the last three, and aK and /I:. (~=3, 4, . . . . 14) are functions of the first three 
invariants tr d, tr d2, and tr d3 alone, i.e., 

aK=[a,.OfaX, tr (b-d)+a,, tr (b-d)d+a,, tr (b-d)d2] 
aKI=aK.Jtr d , tr d2, tr d3) , K=O, 1, 2 

A-0, 1, 2, 3 . 
(4.15) 

We now use the condition of symmetry for s to reduce it further. In this case s=sr 
and we obtain 

s=&&t-~,d+/?2d2+~3(b+bT-2d)+~,(db+brd-2d2) 
$/I&l f dbT- 2d2) + &(d’b + bTd2 - 2d3) + &(bd2 + d2b - 2d3) 
+~&dbd2+d2b=d-2d4)+j&(dbrd2+d%d- 2d4) 

(4.16) 

where &, j?, and /I2 have the same functional form as in (4.15) with the coefficients, aKA, 

replaced by IL and B4, . . . , P9 are polynomials in the first three invariants listed in (4.14). 
To determine the polynomial form of 3c we first recall (4.9) which implies that hkfm=O. 

cl 
Now hkrmrsr is an isotropic tensor of six order so that upon substituting the known expression 

L 

of a six order isotropic tensor we get 

y,=y,(d, b-d, bl’-d), (K=l, 2, . . . , 15). (4.18) 

Since yr are also scalar invariants under all orthogonal transformation Q, when these 
functions are analytic in their arguments, then, in the micro-linear case under consideration, 
they are expressible as polynomials in the first three of the six invariants listed in (4.14) 

yw = y,.(tr d , tr d2 , tr d3) 9 (h.=l, 2, . . . , 15). (4.19) 
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The conditions (4.11) are satisfied by taking 

c10= -n+a(d, b-d, bT-d) 

P o= -n+/3(d, b-d, b’-d) 
y,(O, 0, O)=CY(O, 0, O)= P(O, 0, 0) =o ) (K=l, 2, 1.. , 15) 

where a and fl are functions of the six invariants listed in (4.14). 

(4.20) 

Theorem 8. AN Stokesian fluids are included in the class of simple micro-$&is represented 
by the constitutive equations (4.13), (4.15) and (4.16) subject to (4.20) 
Proof: Take all a, =/I, = 0 for K 2 3 and y, = 0 for all K ; then (4.13), (4.15) and (4.16) reduce to 

t=(-n+a)I+aId+a2dZ, s=(-n+~)1+&d+&d2 (4.21) 

where a, aI, Q, /I, fl,, and & are now to be considered as function of the following three 
invariants 

or equivalently 

tr d , tr d2 , tr d3 (4.22) 

Id 1 IId > III, (4.23) 

as defined in (2, Section 481. If we now select a=& a 1=fl, and a2=& then we get t=s. 
Further when im’ and 1 are taken zero then b=O and the balance equations (3.2), (3.4) are 
automatically satisfied and (3.1), (3.3) and (3.5) reduce to those valid for Stokesian fluids. 

Theorem 9. For special types of body and surface moments undfor d = b all motions of simple 
micro-fluids coincide with those of the Stokesian flui& 
Proof: By taking d=b the constitutive equations for stresses reduce to (4.21), and (4.21),. 
Stress moments 1 are fully determined through (4.17) by putting 

a klm = - Wkl;m - -d kl;m- “k;~m (4.24) 

which is the result of d= b. Thus the balance equations (3.4) gives a special distribution for 
I and the boundary conditions (3.7) a special surface moment distribution A{$;. In this case 
with a=/$ a1 =fi, and a2 =pz we are left with the basic equations and boundary conditions 
of Stokesian fluids. 

The constitutive equations (4.13), (4.16) and (4.17) may be used as a master set from 
which many special and approximate theories may be extracted.* Here we give only the 
linear theory. 

The linear theory. Expanding the constitutive coefficients a*., & and yK into power 
series of their arguments and retaining only the linear terms in d and b we obtain 

t=[-n+&trd+&tr(b-d)]I+2p,d+2p0(b-d)+2p,(bT-d) 
s=[-n+~,trd+~otr(b-d)]I+2i,d+~,(b+b7-2d) 

(4.25) 

where A,, I,, pa, p,,, pL1, g,, q,,, C,, and [, are viscosity coefficients. They are, in general, 
functions of temperature. In order to have the Stokesian fluids included in the linear 
theory we also take 

l,=rlv 9 p,=i, * (4.26) 

* Further generalizations of the present theory is possible and is presently under consideration. 
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Thus the linear theory of simple micro-fluids introduces jive additional viscosities into the 
stress constirutive equations. The form of the constitutive equations for stress moments is 
identical to (4.16) except that yK are now constants (or, in general, functions of temperature 
alone). Including the gyroviscosities ;I, the total number of viscosity coeflcients is 22. 

5. PARTIAL DIFFERENTIAL EQUATIONS OF MOTION 

The partial differential equations of motion are obtained by adjoining the equations of 
conservation of mass (3.1) and conservation of micro-inertia moments (3.2) to those obtained 
by substituting the constitutive equations (4.13), (4.16) and (4.17) into the equations of 
balance (3.3) and (3.4). Here we give only the result for the constitutively linear theory. 

(5.1) 

(5.2) 

(5.3) 

(PO -flcl)(n”, - a,:)+(&l-rlo)%lm~k, +(2&C--i*)vkr +(2P,-c,)vlk+(YI +Y13P:ml 

f(Y2 +Y*l)~mk:mr +h +Y6Kn:lk +(Y4+Y*2hm;mk+(Y5 +Ylo)vml”m +Y,4%k;m” (5.4) 
+y~~Vk,;m,+(~‘,vmn;~m+ygVnm;~m+ygvm,~”)6kI +P(l,k-i_*k)=O. 

We have I + 6+ 3 +9= 19 equations to determine the I9 unknowns p, ikm = i”“, yp and v’ 
since the body forcef, and the body moment I,” are supposed to be given and &,‘according to 
(2.13) is expressible in terms of i’” and v:, i.e., 

&k = i”‘k( 3,, + I’,rV,“) . (5.5) 

Under appropriate boundary conditions, e.g., equations (3.6) and (3.7) and initial conditions 
the complete behaviour of constitutively linear theory of simple micro-fluids should be 
derivable from the foregoing nonlinear partial differential equations. As the initial condi- 
tions one may suggest the initial value problem of Cauchy namely prescribing the initial 
values of p, Pm, v,l’ and u“ at time 1=0. The final judgment on whether a boundary and 
initial value problem is well posed requires the proof of existence and uniqueness theorems. 
The difficulties encountered on this question for the simple case of Navier-Stokes flows are 

well-known. 
Finally we note that by setting i.,=/co=~l, =qo=il =/k”‘=ik’~==~K=O (5.3) reduce to 

Navier-Stokes equations; (5.1) remains valid and equations (5.2) and (5.4) reduce to 
identities O=O. This is but one more verification of the fact that Navier-Stokes equations 

are special cases of those of the simple micro-fluids. 
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R&urn&-Dans cette etude on determine et on discute les equations fondamentales de champ, les conditions 
de passage et les equations d’ttat de ce qu’on peut appeler les milieux a ‘micro-ecoulements simples. On 
montre que ces milieux correspondent a une generalisation des fluides de Stokes darts lesquels on fait 
intervenir des ‘micro-d&placements’ local&%. On prtsente la discussion de certains cas particuliers dans 
lesquels la gyrations est faible et oh les taux de micro-deformation sont lineaires. On obtient ainsi les 
equations differentielles aux dtrivees partielles de la thtorie lintaire de constitution. 

Zusammenfassung-Die grundlegenden Feldgleichungen, Sprungverhlltnisse und Aufbaugleichungen von 
was wir ,,einfache mikro-fliissige” Mittel nennen, werden abgeleitet und besprochen. Diese Fltissigkeiten 
werden als eine Verallgemeinerung der Stokes-Fliissigkeiten gezeigt, bei denen iirtliche Mikro-Bewegungen 
in die Berechnung einbezogen werden. Sonderfalle bei denen es kleine Wirbel und lineare Mikro-Verfor- 
mungssltze gibt, werden besprochen. Die teilweise abgeleiteten Gleichungen der aufbauenden linearen 
Theorie werden erzielt. 

Sommario-Si derivano e si esaminano le equazioni fondamentali di campo, cause di errore ed equazioni 
essenziali relative a quelle the vengono dette sostanze ‘semplici micro-fluenti’. Si evidenzia essere questi 
fluidi una generalizzazione dei fluidi di Stokes tenendo conto di micro-movimenti locali. Si esaminano 
casi particolari di limit&a rotazione e di valori lineari delle microzdeformazioni. Si ottengono le equazioni 
differenziali abbreviate della teoria lineare fondamentale. 

~6CTpaKP-BbIBO~RTCx H ~CKyCCUpyrOTCSI ypi?lBHeHW llOJIK, CKa’fKOBbIe j’CnOBH5I Ei KOHCTWTYTHBHbIe 

YpaBHeHHX AJIR TBK Ha3bIBaeMOi WHKPO-TeKYWti, CpAbI. 

nOKa3aH0, YTO TSLKHe lKH,D,KOClTi RBJIIIIOTCR 0606menweM CTOKe3HeBbIX mwAKOCT&, B KOTOPblX 

o6pameao oco6oe BHAMaHUe Ha hlEKpO-ABEDKeHHe. &iCKyCCHpy~TCR oco6bre CJIy’iaH, B KOTOPbIX BpiUI.WHHe 

MZi.JIO Ef CKOPOCTH hf&iKpO-A@OpMFl@i RBJIKIOTCII JIUH&HbIMH. nOJIJ”IeHbI AEl~~~HIViaJIbHbIC )‘paBHeHHSl 

B YaCTHbIX llpOIi3BOAHMX K KOHCTUTYTWBHOti TeOpUU. 


