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SIMPLE MICROFLUIDS*
A. CeEmaL ERINGEN

Purdue University, Lafayette, Indiana

Abstract—The basic field equations, jump conditions and constitutive equations of, what we call, ‘simple
microfluent’ media are derived and discussed. These fluids are shown to be a generalization of the Stokesian
fluids in which local micro-motions are taken into account. Special cases in which gyrations are small and
micro-deformation rates are linear are discussed. The partial differential equations of the constitutively
linear theory are obtained.

1. INTRODUCTION

IN A companion paper [1] we gave a nonlinear theory for an elastic solid in which the first
stress moments, micro-stress averages and inertial spin play important roles. Elastic solids
exhibiting such local effects were named ‘simple microelastic materials’. In the present
paper we investigate a new class of fluids which exhibit similar micro-effects.

A simple micro-fluid, roughly speaking, is a fluent medium whose properties and
behaviour are affected by the local motions of the material particles contained in each of its
volume element. A precise definition of such a fluid is given in section 4. The simple
micro-fluids possess local inertia. Consequently new principles must be added to the basic
principle of continuous media which deals with

(i) conservation of micro-inertia moments

(ii) balance of first stress moments
The theory naturally gives rise to the concept of inertial spin, body moments, micro-stress
averages and stress moments which have no counterpart in the classical fluid theories. In
these fluids stresses and stress moments are functions of deformation rate tensor, and various
micro-deformation rate tensors. Fluids having surface tensions, anistropic fluids, vortex
fluids and fluids in which other gyrational effects are important, are conjectured to fall
into the domain of simple micro-fluids.

The simple micro-fluids are viscous fluids and in the simplest case of constitutively
linear theory these fluids contain 22 viscosity coefficients. Nonlinear Stokesian fluids turn
out to be a special class of simple micro-fluids.

In Section 2 we discuss the motion and micro-motions. The gyration tensor, inertial
spin and the conservation of micro-inertia and objectivity of micro-deformation rate tensors
are derived and discussed. Equations of balance, jump conditions and discussion of entropy
production and other relevant thermodynamic concepts occupy Section 3. In Section 4 we
give a theory of constitutive equations. The partial differential equations of constitutively
linear simple micro-fluids are given in Section 5.

2. MOTION
The motion and the inverse motion of a material point X', having curvilinear coordinates
XX, in the undisturbed body V+S, are respectively given by the parameter one-to-one
mappings
* Partially sponsored by the Office of Naval Research.
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206 A. C. ERINGEN

x' =x(X', 1), X' =X(x', 1) 2.hH

where x’, referred to curvilinear coordinates x'*, is the spatial point occupied by the material
point X’ at time 1.

We decompose the motion and the inverse motion as
x'=x(X, H+E&X, g, 1), X'=X(x, N+E(x, &, 1) (2.2)

where E and § are, respectively, the relative position vectors of the material point X’ and its

spatial place x’ at time ¢, with respect to the positions X and x, respectively, Fig. 1. By
selecting

— , &
g =y EX, w X, = =K K (2.3)

ZE =0

it can be shown that [1] the mass center of a volume element d ¥ in the undisturbed body is
carried into the mass center of dv in the deformed body.

————

0
o

FiG. 1. Undeformed and deformed volume elements.
The inverse micro-motions x¥,(x, 7) are defined by

XKk KkL=5f s XKk XKI= 515 . (2.4)

Each of the sets in (2.4) is a set of nine linear equations for nine unknowns x¥,. A unique
solution exists in the form

( cofactorys I .. Lom
Xk A 2, kimXL XM (2.5)
provided that the jacobian

Jo=det y* #£0 (2.6)

where det =determinant,
For (2.2), to be the unique inverse (2.2),, (2.6) as well as

J=det x*,#0 @n
must be assumed. Condition (2.7) is required for X(x, t) to the unique inverse of x(X, t).

It is not difficult to see that, dual to (2.3), we have

X =gk, 8, 5= @8)
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Next we calculate the velocity v’ and the acceleration a’. These are obtained by taking
time rates of (2.2) and using (2.8),.

U’k=l/‘k+V‘kf‘ (2.9)
a*=a*+(0* +v, v (2.10)
where
ki
v*(x, t)si"=‘-3:x-
ot |,
Dv* ot
kx, s — =—| +o&¢'
@ D=, =5 o (2.11)
vi(x, =1
D D
A Bt("xk) s i = Dt ).

Here D/D: stands for the material derivative and a semicolon indicates covariant partial
differentiation with respect to the metric g,, of the coordinates x*. Note that

Ee=pke, (2.12)

The tensor v is basic in all of the following developments. We shall name it ‘gyration tensor’.
In the sequel we will also need the inertial spin defined by

M =I"Mit gy = 0 v ) 2.13)
where
I"”:I“":j poEXELdV’ (2.14)
av

is a constant material tensor and

= I @.15)

is a corresponding one for the deformed body. We shall name i*™ as ‘micro-inertia moments’.

Theorem 1. Micro-inertia moments satisfy the following partial differential equations
ai"m k r_ - k ke m
— i =™ =y, =0 . (2.16)
at :
Proof: Take material derivative of (2.15), i.e.,

D . . .
Di (™= "My o™ + M ™

From (2.11), with the help of (2.4) we solve for
ixk =kaXxl . 2.17)

Using this in the previous equations and rearranging terms we obtain (2.16).

The differential equations (2.16) are the complements to the continuity equations of the
hydrodynamics for micro-fluids. We shall name them as the equations of ‘coaservation of
micro-inertia moments’. The integral form of these equations are of course given by (2.15).
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Theorem 2. The material derivative of micro-displacement differentials d&* is given by

D
D (dE¥y=vide! +v,";,,,é‘dx'" . (2.18)
Proof: Take the material derivative of
d&* =dy, FEX +y fdEX (2.19)
ie.,
D w D D .
— (A& = = (dy)EX +-= (r)d=ER 2.2
Dt(dc Dr( YK') +Dt (xx)d (2.20)
but
D D D .
Di (dlxk)-—-_D“t (Xxk;ldxl)=51 (Xxk;l)dxl +XKk;lvl;rdx

where we used the well-known result {2, equation 19.1], i.e..

D nh_ 1 _m
Dt(dx)—v:,,,dx . (2.21)

The following identity is also needed

D k D k k m
_D—t (XK ;1)= a ZK —Xk wmV - (222)
B

Through this and (2.17) we will have
D k ok, r
Di (dxx)=0"1x),dx" . (2.23)
t
Using this in (2.20) we obtain (2.18).
Theorem 3. The material derivative of the square of arc length in the deformed body is given by

D .
B (ds'?)=[v + 01 + (Vg + V)& Jdx*dx! (2.24)

+ 20 + Vi + ¥ ENAXAE + (v + v )dERE
Proof: Take the material derivative of
ds'? =gy (dx* +dé*)(dx’ +dE)
= gudx*dx' +2g,,dx*dé +g,,dE*dét .

Using (2.21) and (2.18) and rearranging the terms we obtain (2.24).
We define ‘deformation rate tensor’ d, ‘micro-deformetion rate tensors’ b and a by

A=t 0 = ey s b=Vt Qam=Vim - (2.25)

Equation (2.24) can now be expressed as
D . : chgs
Y (ds'®)=2[dy + a6 JAX X"+ 2(by + d,y$AXMAE +2[ by — dyyJdEHdE' . (2.26)

It is clear that when d=b=0 then a,,,=0 and therefore D(ds'?)/Dt=0. Conversely, for
arbitrary dx* and dé¥, vanishing D(ds’?)/Dt implies d=b=0. We therefore have proved
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Theorem 4. A necessary and sufficient condition for micro-rigid motion is that b=d=0
This theorem replaces the well-known Killing’s theorem of differential geometry.
It is well-known that the deformation rate tensor d is an objective tensor; that is, if
(X', 1) and xX'(X’, 1) are two objectively equivalent motions, i.e., referred to rectangular
frame of reference

=% +b" (2.27)
where Q% and b’ are function of time ¢ alone subject to
04 0.'=0/0',=5, t'=t—a (2.28)
where a is a constant, then d¥ transforms as
& =0d,0" or d=QdQT. (2.29)

Physical interpretation of this is that under the rigid time dependent translation and
rotation of the frame of reference and the constant shift of time d transform like an absolute
tensor. We now prove

Theorem 5. The micro-deformation rate tensor b and a are objective tensors.
Proof: By putting x'+ =X and x* + 7 =X respectively in place of x/ and £'* in (2.27) we
have

=0k X" +b, k=04 " (2.30)
From (2.30), by differentiation we get
iKk =ri XK'+ri XKr .
Now multiply both sides of this equation by 2X =0/ x¥,, and use (2.4),and(2.11),. Hence
0 =0%vr 0 +0% Q/ (2.31)
but we have, c.f, [2, equation 27.16],
ri = —Qnrﬁn.k +anur’t .
Substituting this into (2.31) we obtain
k=QX b 0" or b=QbQT (2.32)

which proves the part of the theorem concerning b. Objectivity of a is shown by simply
differentiating (2.31) with respect to x™ and using dx™/8%"= Q,*. Hence

le;m = ri vnr.len Qmp (233)

which completes the proof of the theorem.

3. EQUATIONS OF BALANCE AND ENTROPY

The principle of conservation of mass is expressed by the well-known equation
0
= (pr*) =0 3.1)

where p is the mass density of the deforming medium. The principle of conservation of
micro-inertia moments leads to equations (2.16), i.e.,
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61"""

_E‘t_+ik"';r =ik =ik m=0, (3.2)

The axioms of local balance of momenta and conservation of energy are expressed by

1.

o +p(fl =)=0 (3.3)
gl g™ JRm 4+ p(I'm—6'™) =0 (3.4)
pé =1, +(sM — vy + A + 4% + ph (3.5)
valid within the material volume ¥, and by the jump conditions
=1, (3.6)
AMmpy = 20 3.7
4*Me=qa) (3.8)

valid on the surface & of ¥".
Here

1 =stress tensor, p=mass density

f' =body force per unit mass
s =s*=micro-stress average
A¥Im —the first stress moments
I'™ =the first body moment per unit mass
¢'™ =inertial spin
¢ =internal energy density per unit mass
q* =the heat vector
h =the heat source per unit mass
n* =the exterior unit normal vector to & .
The surface tractions #4,), moments A{m, heat g, and f*, I'" and 4 are prescribed quantities

or replaced by equivalent information.

Axiom. A simple micro-fluid is assumed to possess an internal energy function e which depends
solely on entropy 1, specific volume 1/p and the micro-inertia moments i*m

e=s<r1, :—)—, i""') . 3.9)

We assume that ¢ is continuously differentiable with respect to its arguments and define
the thermodynamic tensions by

de ot Je (3.10)
= N = — o3 Tkm = Tkm ™ .
onlp-1 ep™ R To

Here 0 is called the ‘thermodynamic temperature’, n the ‘thermodynamic pressure’ and
T.m the ‘thermodynamic micro-pressure tensor’.

Since n=n(x, 1), p=p(x, t) and i=i(x, r) from (3.9) by differentiation and using (3.1) and
(3.2), it follows that

é=0r’;—§ oAy + 2™V, (3.11)
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We decompose the stress tensors t and s into two parts
tt=—pot +7, = —p& +5, (3.12)

with p representing hydrostatic pressure.*
Upon replacing ¢ in (3.5) by (3.11) and using (3.12) we obtain the differential equation
of entropy production

PO = (m =Py + 1 %0 + (&% — B — v + A5+ ah +ph (3.13)
where
™ =2pi*"n,,, (3.14)

will be named the thermodynamic micro-stress tensor. From the differential equation (3.13) of
entropy it is clear that the following dissipative forces contribute to the time rate of change
of entropy

(a) the difference between the mechanical and thermodynamic pressures

(b) the stress power

(c) the difference of micro and thermodynamic stresses from the stress

(d) the stress moments

(e) the heat input and the heat sources.

It is interesting to note that the micro-fluid with no rigid structure possesses a reversible
thermodynamic stress whose energy must be subtracted from the stress energies in calculating
the entropy production. This reversible energy is not encountered in the classical Stokesian
fluids.

If we write (3.13) in the equivalent form

ph

pii—(a"10)u=A+5

(3.15)

where
0A = (n—p)y + 1,0+ — P = ! + 45 ™, L+ 4 (log 0) (3.16)

By integration of (3.15) over the volume we obtain

k
H-§ % dak=J (A+%’)dv (3.17)
L4 v

HEJ~ pndv (3.18)
¥

where

is the total entropy. The Clausius—Duhem inequality
qk
H-§ — da,=0 (3.19)
y 8

is obtained from (3.17) for 80 if
0A>0, ph20. (3.20)

* Since p is somewhat arbitrary there is no reason to take different p, for t and s thus introducing two
different pressures. Single pressure is also indicated through the dependence of € on single density p in (3.9)
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In accordance with the tradition we only admit those values of 820; then (3.19) implies
(3.17). Further progress in dealing with (3.20), requires additional assumptions requiring
independent non negative character of various dissipative energies, e.g.,

g*(log0) ,=0, etc.

Since our intention, here, is not to examine closely the foundations of the thermodynamics
or to dwell into the thermal problems, we leave the subject matter of entropy at this point.

4. CONSTITUTIVE EQUATIONS

Definition
A fluent medium is called a simple micro-fluid if it possesses constitutive equations of
the form

tkl =fkl(vp;q ’ qu ’ qu;r)
sklzgkl(vp;q ’ qu s "pq;r) (4'1)
Aam = Bam(Vpig s Vg s Vgr)
subject to spatial and material objectivity and
a=Su=—"Tgy, Aum=0 4.2)

when d=b=0.

According to the principle of objectivity (4.1) must be form-invariant in any two
objectively equivalent motions X’ and x’ related to each other by (2.27). This imposes
conditions on the forms of the functions fy,, g,, and h,,,,. In order to apply the principle of
objectivity one takes both frames & and x’ rectangular and connected by (2.27) or equi-
valently (2.30) for & and 2. In the frame R’ we must have

ikl =fkl(i>p,q ’ i‘)pq ] i}pq,r) (43)
A
and similar expressions for §,; and 4,,,,. We have
2kl = ka'an’n 3 é‘fl = ri U' .nQI" +ri er (4 4)

911‘ = riv"r QI" + Q"r Ql' L] ?’lk,m = rivn’,len Qmp
c.f. [2, equation 48.10}], (2.31) and (2.33). Thus, (4.1), (4.3) and (4.4) imply that
Qf(vlfl ’ vlks vl k,m)QT A (45)
=f(ri v':ann +ri Ql' > rivnr Ql" +ri Ql’ ’ rivn'.le" mp)
valid for all v,; v,; v,/,, and all orthogonal tensors Q. Now we can always select Q=1 and Q
equal to an antisymmetric tensor transformation given a priori. Selecting

ri = 6¢ s Qhr = wrk = %(Ur.k - v’fr)
we see that (4.5) reduces to the first of the following equations
t=1{(d, b—d, a), s=g(d, b—d, a), A=h(d, b—d, a). (4.6)

Equations for s and A, here, are obtained by the same procedure. Arguments of f, gand h
are now objective tensors and these functions are subject to
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f(QdQ", Q(b-ad)Q", QaQ’Q")=Qf(d, b—d, 2)Q”
g(QdQ”, Q(b-d)Q", QaQ'Q")=Qg(d, b—d, 2)Q” 4.7
h(QdQ", Q(b—d)Q", QaQ"Q")=Qh(d, b—d, a)Q"Q"

where ambiguous expressions such as Q a Q7 Q7 are understood to represent the transforma-
tion of the type (2.30). Equations of (4.5) are valid for all orthogonal tensors Q. Selecting
Q=-1, (4.7) gives

f(d, b—d, —a)=fd, b—d, a)
g(d, b—d, —a)=g(d, b—d, a) (4.8)
h(d, b—d, —a)=—h(d, b—d, a).

Consequently f and g are even in a and h is odd in a. Therefore
h(d, b—d, 0)=0 4.9)

and we proved the theorems

Theorem 6. A second order objective tensor can only be an even tensor function of odd order
tensors. A third order objective tensor can only be an odd function of any objective third order
tensor*

Corollary. Stress moments vanish with vanishing micro-deformation rate tensor a.

Theorem 7. The constitutive equations of simple micro-fluids are equivalent tot

t*,=f5(d, b—d, a), s%=g%(d, b—d, a), Fn=ht(d, b—d, a) (4.10)
where f, g, and h are subject to (4.7) to (4.9) and
(0, 0, 0)= —nd}, 940, 0, 0)= —=df, Km0, 0, 0)=0. (4.11)

Equations (4.7) impose conditions on the forms of f, g and h. These conditions are similar
to conditions of isotropic tensors. Since third order tensors are involved, the determination
of the complete invariants of tensors d, b, and a poses a tedious and lengthy study which
presently is not available or we could not locate any work on this subject. However, by the
fact that the micro-motions represented by the tensors b—d and a are generally small
we proceed to obtain power series representation of the constitutive equations inb—d and a
stopping at the first order terms. Thus we write

M=f*(d, b—d, bT—d)+0(a?)
s"'=g“'(d, b-—-d, bT—d)+O(az) (4]2)
zklm=hklm(d, b-—d, bT_d)+hklmrst(d, b—d, a)a,,,+0(a3) .

* A part of this theorem is usually attributed to P. Curie as the Curie Principle. In the references
made [3], [ have been able to find the following vague statement: “‘Autrement dit, certains éléments de
symétrie peuvent coexister avec certains phénoménes, mais ils ne sont pas nécessaires. Ce qui est nécessaire,
c’est que certains éléments de symétrie n'existent pas. C’est la dissymétrie qui crée le phénoméne™. Several
pages of long explanations and examples that follow this statement confuses the matter further by mixing
material symmetry with what we now call spatial objectivity.

t We note that f, g, and h may be taken functions of d, b, and a rather than d, b-d, a if we wish. The
form (4.10) is convenient for the purpose of linearization about b-d and a.
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The inclusion of bT —d, the transpose of b—d, into the arguments of these functions is

necessitated for the purpose of making these functions isotropic functions since t, b and A

are not, in general, symmetric tensors. When a further assumption is made to the fact that

the tensor functions of, g, hand h are polynomials in matrices d, b—d and b7 —d we can express
o 1

them in finite number of terms. Using the results of [4] one can show that, c.f., [S, equation
A.1]f and g are expressible as polynomials each having 85 terms. In order not to crowd the
present paper with such lengthy expressions, as stated above, we confine our attention to the
polynomials linear in b—d and b"—d. Hence

t=0aol+a,d+a,d% +ay(b—d) +a4(bT—d) +asd(b—d) +uz(b— d)d
+0a7d(b" — d) +ag(b” ~ d)d +0gd*(b— d) +a, o(b— d)d?> (4.13)
+a,,8%(bT — d) +a,,(bT — d)d* +«, ,d(b— d)d* +a, d(b” —d)d?.

An identical expression with «, replaced by B:, (x=0, 1, ..., 14) is valid for s. The coefficients

2, and B/, for (xk=0, 1, 2) are polynomials of the following six invariants

trd, tr d?, tr d° (4.14)
tr (b—d), tr (b—d)d, tr (b—d)d>

being linear in the last three, and «, and ., (=3, 4, ..., 14) are functions of the first three
invariants tr 4, tr d, and tr d° alone, i.e.,

a,=[%g + 0y, tr (b—d) +a,, tr (b—d)d +a,, tr (b—d)d?]
da =, (trd, trd?, trd’), k=0, 1,2 (4.15)
A=0,1,2,3.

We now use the condition of symmetry for s to reduce it further. In this case s=s”

and we obtain

s= ol + B,d + B,d% + B5(b+bT — 2d) + f,(db +b7d — 2d*)
+ B5(bd +db” — 2d2) + B¢(d’b +b7d? — 2d°) + B,(bd? + d%b — 2d°) (4.16)
+ Bg(dbd>+-d?b7d — 2d*)+ Bo(dbTd? -+ d’bd — 2d%)

where f,, 8, and B, have the same functional form as in (4.15) with the coefficients, «,,,
replaced by B,; and B,, ..., fi, are polynomials in the first three invariants listed in (4.14).
To determine the polynomial form of A we first recall (4.9) which implies that A*™=0.

o

Now A*™ js an isotropic tensor of six order so that upon substituting the known expression
1

of a six order isotropic tensor we get

A= (yklam'r +Ykza'mr +‘);‘3arrm)6f +(744/, '*‘)’ia'zr +)’6a:rl)5ﬁ| . ) (4.17)
+(77a", +788™, + 798" 1m + 7108 m F V1185 m 71285 V138 +128im +7 158t

where
7.=7(d, b—d, b"—d), k=1, 2, ..., 15). (4.18)

Since y, are also scalar invariants under all orthogonal transformation Q, when these
functions are analytic in their arguments, then, in the micro-linear case under consideration,
they are expressible as polynomials in the first three of the six invariants listed in (4.14)

ve=rtrd, trd?, trd?), (k=1, 2, ..., 15). (4.19)
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The conditions (4.11) are satisfied by taking

dg=—n+a(d, b—d, bT—d)
Bo=—n+p(d, b—d, bT—d) (4.20)
10, 0, 0)=a(0, 0, 0)=p(0, 0, 0)=0, k=1, 2, ..., 15)

where o and f are functions of the six invariants listed in (4.14).

Theorem 8. All Stokesian fluids are included in the class of simple micro-fluids represented
by the constitutive equations (4.13), (4.15) and (4.16) subject to (4.20)
Proof: Take all ¢, =, =0 for k>3 and y, =0 for all x ; then (4.13), (4.15) and (4.16) reduce to

t=(~-n+o)l+2,d+a,d?, s=(—n+pI+p,d+8,d> (4.21)

where a, ay, a5, 8, B,, and B, are now to be considered as function of the following three
invariants

trd, tr d2, tr d3 (4.22)
or equivalently
I, Iy, 11, (4.23)

as defined in [2, Section 48]. If we now select a=8, a, =8, and a,=f, then we get t=s.
Further when i™ and 1 are taken zero then 6 =0 and the balance equations (3.2), (3.4) are
automatically satisfied and (3.1), (3.3) and (3.5) reduce to those valid for Stokesian fluids.

Theorem 9. For special types of body and surface moments and for d=Db all motions of simple
micro-fluids coincide with those of the Stokesian fluids

Proof: By taking d=b the constitutive equations for stresses reduce to (4.21), and (4.21),.
Stress moments A are fully determined through (4.17) by putting

Aim = _wkl;m=dkl;m—vk;lm (424)

which is the result of d=b. Thus the balance equations (3.4) gives a special distribution for
1 and the boundary conditions (3.7) a special surface moment distribution A{7. In this case
with a=pf, o, =, and a, =, we are left with the basic equations and boundary conditions
of Stokesian fluids.

The constitutive equations (4.13), (4.16) and (4.17) may be used as a master set from
which many special and approximate theories may be extracted.* Here we give only the
linear theory.

The linear theory. Expanding the constitutive coefficients «,, §, and y, into power
series of their arguments and retaining only the linear terms in d and b we obtain

t=[—n+A,trd+istr(b—d)J1+2u,d +2u5(b—d)+2u,(b" —d)

s=[—n+n,trd+note(b—d)JI+2{,d +{,(b+b7 —24d) (4.25)

where A,, Ag, My Hos H1s Mo Mos Cur @and §; are viscosity coeflicients. They are, in general,
functions of temperature. In order to have the Stokesian fluids included in the linear
theory we also take

A=, Ho=G, - (4.26)

* Further generalizations of the present theory is possible and is presently under consideration.
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Thus the linear theory of simple micro-fluids introduces five additional viscosities into the
stress constitutive equations. The form of the constitutive equations for stress moments is
identical to (4.16) except that y, are now constants (or, in general, functions of temperature
alone). Including the gyroviscosities y,. the total number of viscosity coefficients is 22.

5. PARTIAL DIFFERENTIAL EQUATIONS OF MOTION

The partial differential equations of motion are obtained by adjoining the equations of
conservation of mass (3.1) and conservation of micro-inertia moments (3.2) to those obtained
by substituting the constitutive equations (4.13), (4.16) and (4.17) into the equations of
balance (3.3) and (3.4). Here we give only the result for the constitutively linear theory.

“

¢
% o)1 =0 (5.1
[
aitm , :
— + ik,',.,l)r—- l'rm‘,’k _ i’k\'r"'=0 (52)
ot !
-7, +(;'v+luu+ﬂ0 —/tl)u'glk +(“v_#0 +1u1)vl;kk (5 3)

+'10ka;: +2p0V* 1 20, v+ p(fi = ) =0

(o= (V" = 01 ) + (Ao — o)V 8% +uto — LV +(2uy — LV + (94 +YI3)‘;km;ml
+G2 Y™t 3 F PV it F e Y1V (s 7 1oV 1107 (5.4)
+YX5vkl;mm +(}'7vmn;nm +78vnm;nm +},0vmm:"n)6kl +P(’1k— dlk)::O .

We have 1 +6+349=19 equations to determine the 19 unknowns p, i*" =" v*and v*
since the body force f;and the body moment /,* are supposed to be given and 6,* according to
(2.13) is expressible in terms of i*” and v}, i.e.,

G = (D Vv (5.5)

Under appropriate boundary conditions, e.g., equations (3.6) and (3.7) and initial conditions
the complete behaviour of constitutively linear theory of simple micro-fluids should be
derivable from the foregoing nonlinear partial differential equations. As the initial condi-
tions one may suggest the initial value problem of Cauchy namely prescribing the initial
values of p, i*", v* and v* at time r=0. The final judgment on whether a boundary and
initial value problem is well posed requires the proof of existence and uniqueness theorems.
The difficuities encountered on this question for the simple case of Navier-Stokes flows are
well-known.

Finally we note that by setting Aq=jto =1, =no={, =l""=i""=y, =0 (5.3) reduce to
Navier-Stokes equations; (5.1) remains valid and equations (5.2) and (5.4) reduce to
identities 0=0. This is but one more verification of the fact that Navier-Stokes equations
are special cases of those of the simple micro-fluids.
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Résumé—Dans cette étude on détermine et on discute les équations fondamentales de champ, les conditions
de passage et les équations d’état de ce qu’on peut appeler les milieux a ‘micro-écoulements’ simples. On
montre que ces milieux correspondent 4 une généralisation des fluides de Stokes dans lesquels on fait
intervenir des ‘micro-déplacements’ localisés. On présente la discussion de certains cas particuliers dans
lesquels la gyrations est faible et ou les taux de micro-déformation sont linéaires. On obtient ainsi les
équations différentielles aux dérivées partielles de la théorie linéaire de constitution.

Zusammenfassung—Die grundlegenden Feldgleichungen, Sprungverhiltnisse und Aufbaugleichungen von
was wir  einfache mikro-fliissige”” Mittel nennen, werden abgeleitet und besprochen. Diese Fliissigkeiten
werden als eine Verallgemeinerung der Stokes—Fliissigkeiten gezeigt, bei denen 6rtliche Mikro-Bewegungen
in die Berechnung einbezogen werden. Sonderfille bei denen es kleine Wirbel und lineare Mikro—Verfor-
mungssitze gibt, werden besprochen. Die teilweise abgeleiteten Gleichungen der aufbauenden linearen
Theorie werden erzielt.

Sommario—Si derivano e si esaminano le equazioni fondamentali di campo, cause di errore ed equazioni
essenziali relative a quelle che vengono dette sostanze ‘semplici micro—fluenti’. Si evidenzia essere questi
fluidi una generalizzazione dei fluidi di Stokes tenendo conto di micro-movimenti locali. Si esaminano
casi particolari di limitata rotazione e di valori lineari delle microzdeformazioni. Si ottengono le equazioni
differenziali abbreviate della teoria lineare fondamentale.

AGcTpaktT—BBIBOAATCA M IHCKYCCHDYIOTCA YPABHEHHS TMOJA, CKAYKOBBIE YC/IOBHS M KOHCTHTYTHBHbBIE
yYpaBHEHHs VTS TAK HA3bIBAEMOM «VIMKPO-TeKy4el» Cpembl.

IToka3aHO, 4TO TaKHe KUOKOCTH ABIAIOTCA 06oOuieHMeM CTOKE3MEBBLIX KUAKOCTEH, B KOTOPBIX
obpaieHo 0coboe BHAMAHHE HA MHEKPO-IBHXEHHE. JJHCKYCCHPYIOTCS OCOOBIE Cllyyau, B KOTOPBIX BpalleHHe
MaJI0 K CKOPOCTH MHKpO-aedhopManuii asnsioTca nuHeknbivu. Tlonyyens! qudpepeHIHanbHbE YPABHEHHS
B YaCTHBIX TPOU3BOAHBIX X KOHCTHTYTHBHOM TEOpHU.



